Vector Algebra I

Scalars and Vectors (1)

\square Vector analysis is a mathematical tool with which EM concepts are most conveniently expressed and comprehended.
\square A scalar is a quantity that has only magnitude (time, mass, distance, etc)
\square A vector is a quantity that has both magnitude and direction (velocity, force, electric field intensity, etc.

Scalars and Vectors (2)

\square EM theory is essentially a study of some particular fields.
\square A field can be scalar or vector and is a function that specifies a particular quantity everywhere in a region.
\square Examples of scalar fields are temperature distribution in a building, electric potential in a region.
\square The gravitational force on a body in space is an example of vector field.

Scalars and Vectors (3)

$\square \mathrm{A}$ vector \mathbf{A} has both magnitude and direction. $\quad \mathbf{A}=\mathbf{a}_{A} A$.
\square A unit vector $\mathbf{a}_{\mathbf{A}}$ along \mathbf{A} is defined as a vector whose magnitude is unity and its direction is along A , that is

$$
a_{A}=\frac{\mathbf{A}}{|\mathbf{A}|}
$$

\square A vector \mathbf{A} in Cartesian (or rectangular) coordinates may be represented as

$$
\boldsymbol{A}=A_{x} \boldsymbol{a}_{\boldsymbol{x}}+A_{y} \boldsymbol{a}_{\boldsymbol{y}}+A_{z} \boldsymbol{a}_{z}
$$

\square Where $\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}$ and A_{z} are called the components (magnitude) of A in the x, y, and z directions, respectively.
$\mathbf{a}_{\mathbf{x}}, \mathbf{a}_{\mathrm{y}}$ and \mathbf{a}_{z} are the unit vectors in the x, y, and z directions, respectively.
Therefore, the unit vector along A may be written as

$$
\mathbf{a}_{A}=\frac{A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}
$$

Vector Addition and Subtraction (1)

\square Two vectors A and B can be added together to give another vector C , that is:

$$
\mathbf{C}=\mathbf{A}+\mathbf{B}
$$

\square The vector addition is carried out component by component
\square Thus, if $\mathrm{A}=\left(\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}\right)$ and $\mathrm{B}=\left(\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}\right)$, then

$$
\mathbf{C}=\left(A_{x}+B_{x}\right) \mathbf{a}_{x}+\left(A_{y}+B_{y}\right) \mathbf{a}_{y}+\left(A_{z}+B_{z}\right) \mathbf{a}_{z}
$$

\square Vector subtraction is similarly carried out as:
$\mathbf{D}=\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})$
Commutative law: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$.
$=\left(A_{x}-B_{x}\right) \mathbf{a}_{x}+\left(A_{y}-B_{y}\right) \mathbf{a}_{y}+\left(A_{z}-B_{z}\right) \mathbf{a}_{z} \quad$ Associative law: $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\underset{\mathbf{B}}{ }+\mathbf{B})+\mathbf{C}$.

Vector subtraction is neither 1. Commutative, nor
2. Associative.

(a)

(b)

Vector addition $\mathbf{C}=\mathbf{A}+\mathbf{B}$: (a) parallelogram rule,
(b) head-to-tail rule.

Vector Addition and Subtraction (2)

(a)

(b)

Vector subtraction $\mathbf{D}=\mathbf{A}-\mathbf{B}$: (a) parallelogram rule, (b) head-to-tail rule.
\square The three basic laws of algebra obeyed by any given vectors A, B, and C , are summarized as follows:

Law

Addition

$$
\begin{array}{ll}
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} & k \mathbf{A}=\mathbf{A} k \\
\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C} & k(\ell \mathbf{A})=(k \ell) \mathbf{A} \\
k(\mathbf{A}+\mathbf{B})=k \mathbf{A}+k \mathbf{B} &
\end{array}
$$

Vector subtraction is neither
$k \mathbf{A}=\mathbf{A} k \quad$ 1. Commutative, nor
2. Associative.

Position Vector

\square Point P in Cartesian coordinates may be represented by ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
\square The position vector r_{p} (or radius vector) of point P is defined as the directed distance from the origin O to P , i.e.

$$
\mathbf{r}_{P}=O P=x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z}
$$

\square For point $(3,4,5)$, and point $(3,3,3)$ the position vectors are shown in the figures below.

Distance Vector

\square The distance vector is the displacement from one point to another
\square For two points P and Q given by ($\left.\mathrm{x}_{\mathrm{P}}, \mathrm{y}_{\mathrm{P}}, \mathrm{z}_{\mathrm{p}}\right)$ and $\left(\mathrm{x}_{\mathrm{Q}}, \mathrm{y}_{\mathrm{Q}}, \mathrm{z}_{\mathrm{Q}}\right)$, the distance vector (or separation vector) is the displacement from P to Q , that is.

$$
\begin{aligned}
\mathbf{r}_{P Q} & =r_{Q}-r_{P} \\
& =\left(x_{Q}-x_{P}\right) \mathbf{a}_{x}+\left(y_{Q}-y_{P}\right) \mathbf{a}_{y}+\left(z_{Q}-z_{P}\right) \mathbf{a}
\end{aligned}
$$

\square Both P and A may be represented in the same manner as ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and ($\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}$), respectively.
\square However, the point P is not a vector; only its position vector OP is a vector.

\square A vector field is said to be constant or uniform if it does not depend on space variables x, y, and z .
\square For example, vector $\mathrm{B}=3 \mathrm{a}_{\mathrm{x}}-2 \mathrm{a}_{\mathrm{y}}+10 \mathrm{a}_{\mathrm{z}}$ is a uniform vector while vector $\mathrm{A}=$ $2 x y a_{x}+y 2 a_{y}-x z 2 a_{z}$ is not uniform.

Vector Multiplication - Dot Product

\square The dot product of two vectors A and B , written as $\mathrm{A} \cdot \mathrm{B}$, is defined geometrically as the product of the magnitudes of A and B and the cosine of the angle between them

$$
\mathbf{A} \cdot \mathbf{B}=A B \cos \theta_{A B}
$$

\square Also called scalar product because it yields a scalar quantity.
\square If $\mathrm{A}=\left(\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}\right)$ and $\mathrm{B}=\left(\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}\right)$, then

$$
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

\square Note that

$$
\begin{aligned}
& \mathbf{a}_{x} \cdot \mathbf{a}_{y}=\mathbf{a}_{y} \cdot \mathbf{a}_{z}=\mathbf{a}_{z} \cdot \mathbf{a}_{x}=0 \\
& \mathbf{a}_{x} \cdot \mathbf{a}_{x}=\mathbf{a}_{y} \cdot \mathbf{a}_{y}=\mathbf{a}_{z} \cdot \mathbf{a}_{z}=1
\end{aligned}
$$

Vector Multiplication - Cross Product (1)

\square The cross product of two vectors A and B, written as $A x B$, is a vector quantity whose magnitude is the area of the parallelepiped formed by A and B and is in the direction of the right thumb when the fingers of the right hand rotate from A to B .

$$
\mathbf{A} \times \mathbf{B}=A B \sin \theta_{A B} \mathbf{a}_{n}
$$

Vector Multiplication - Cross Product (2)

\square If $A=\left(A_{x}, A_{y}, A_{z}\right)$ and $B=\left(B_{x}, B_{y}, B_{z}\right)$, then

$$
\left.\begin{gathered}
\left|\mathbf{A} \times \mathbf{B}=\left|\begin{array}{lll}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|\right.
\end{gathered} \right\rvert\,
$$

\square Note that:

$$
\begin{aligned}
& \mathbf{a}_{y} \times \mathbf{a}_{z}=\mathbf{a}_{x} \\
& \mathbf{a}_{z} \times \mathbf{a}_{x}=\mathbf{a}_{y}
\end{aligned}
$$

Components of a Vector

\square Scalar Component:

$$
A_{B}=\mathbf{A} \cdot \mathbf{a}_{B}
$$

\square Vector Component:

$$
\mathbf{A}_{B}=A_{B} \mathbf{a}_{B}=\left(\mathbf{A} \cdot \mathbf{a}_{B}\right) \mathbf{a}_{B}
$$

